
University of Sheffield

Computer Vision System for a
Chess-Playing Robot

Gregory Ives

Supervisor: Jon Barker

This report is submitted in partial fulfilment of the
requirement for the degree of MComp Computer Science

in the

Department of Computer Science

May 1, 2019

Declaration

All sentences or passages quoted in this report from other people’s work have been specifically
acknowledged by clear cross-referencing to author, work and page(s). Any illustrations that are not
the work of the author of this report have been used with the explicit permission of the originator
and are specifically acknowledged. I understand that failure to do this amounts to plagiarism and
will be considered grounds for failure in this project and the degree examination as a whole.

Signed: Gregory Ives

Date: May 1, 2019

ii

Abstract

Computer vision is the field of computer science which attempts to gain an understanding of the
content within a digital image or video. Since its conception in the late 1960s, it has been used for
a huge range of applications, from agriculture to autonomous vehicles. The aim of this project
is to design a computer vision system to be used by a chess-playing robot, capable of detecting
opponents’ moves and returning the best move to be played by the robot. The system should be
robust to changes in perspective, lighting and other environmental factors so that it can be used in
any reasonable setting.

This report researches existing computer vision systems for chess, comparing the methods they use
and the constraints placed on them. New techniques are then explored, with the aim of creating a
system which performs well under minimal constraints. The computer vision system is designed,
implemented and evaluated in the course of this report.

iii

Acknowledgements

I would like to start by thanking my supervisor Jon Barker for his guidance throughout the project;
his insight and experience in the field helped me to shape the project into what it is. Thank you to
the University of Sheffield Chess Society for allowing me to film their chess games and for dictating
every move they played so I could write them down! Lastly, I would like to thank my amazing
family and friends for their continued support throughout my life and my degree.

iv

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Aims and Objectives . 2
1.3 Applications . 2
1.4 Report Structure . 2

2 Literature Review 3
2.1 Applicable Computer Vision Techniques . 3

2.1.1 Change Detection . 3
2.1.2 Object Recognition . 4

2.2 Computer Vision Tools . 4
2.3 Chess Software . 5

2.3.1 Chess Libraries and Engines for Python . 5
2.3.2 Universal Chess Interface . 5

2.4 Existing Computer Vision Systems for Chess . 6

3 Requirements and Analysis 7
3.1 Finding and Rectifying the Board . 7
3.2 Detecting When Moves Have Been Played . 7
3.3 Classifying Which Moves Have Been Played . 8

3.3.1 Classifying Moves Using Change Detection 8
3.3.2 Classifying Moves Using Object Classification 8
3.3.3 Detecting the Players’ Hands . 9

3.4 Data Collection and Annotation . 9
3.4.1 Manually Filming Chess Games . 9
3.4.2 Simulating Chess Games . 10

3.5 Testing and Evaluation . 10
3.5.1 Performance Measure . 10
3.5.2 Parameters and Testing Sets . 10
3.5.3 Testing the System’s Limits . 11

4 Design 12
4.1 Application Structure . 12
4.2 Computer Vision System . 12
4.3 Back-end Server . 14

4.3.1 Application Programming Interface . 14
4.4 Front-end Graphical User Interface . 16

4.4.1 Prototypes . 16
4.4.2 Live Video Streaming . 17

5 Implementation and Testing 18
5.1 Computer Vision System . 18
5.2 Graphical User Interface . 18

5.2.1 Demonstration Page . 19
5.2.2 Annotation Page . 19
5.2.3 Testing Page . 20

5.3 API Endpoints . 20
5.4 Evaluation of the System . 22

5.4.1 Chess Game Annotation . 22
5.4.2 Method of Evaluation . 22

v

6 Results and Discussion 23
6.1 The Effect of the System’s Parameters Upon Its Performance 23
6.2 The Effect of the Environment Upon The System’s Performance 25
6.3 Overall Performance of the System . 27

7 Conclusions 28

References 29

Appendices 31

A Ethics – Consent Form 31

B Ethics – Information Sheet 32

C Ethics – Application Form 34

D Ethics – Approval Letter 38

E Live Webcam Using OpenCV and Flask 39

F Example Annotation File 40

vi

List of Figures
1 Chess move e2e4, depicted by the frame before, frame after and the difference. . . 1
2 Four examples of UCI notation of chess moves. 5
3 White and black chess pieces from overhead. 8
4 Diagram showing the structure of the application. 12
5 Typical structure of a Python package (Torborg, 2019). 13
6 ChessVisionSystem class interaction. 13
7 An extract of JSON response from GitHub’s REST API (api.github.com). 15
8 Initial rough prototype of the web application. 16
9 Prototype of the web application created with Bootstrap. 17
10 Screenshot of the demonstration page. 19
11 Screenshot of the annotation page. 20
12 Screenshot of the testing page. 21
13 The effect of the upper Canny threshold upon the performance of the system. . . . 23
14 The effect of square padding upon the performance of the system. 24
15 The effect of video resolution upon the performance of the system. 24
16 The effect of webcam angle upon the performance of the system. 25
17 Screenshots of chess games at a range of vertical angles. 25
18 The effect of brightness upon the performance of the system. 26
19 The effect of contrast upon the performance of the system. 26

List of Tables
1 Design of the REST API, showing endpoints and their function. 15
2 Final endpoints of the API and their function, after implementation. 21
3 Results of 5-fold testing on the overall performance of the system. 27

vii

1 Introduction

Chess is a two-player strategy board game, played on a checkered chessboard. The game reached
Europe in the 13th century and the modern rules became standardised in the 19th century. The
idea of playing chess against a machine dates back to the 18th century when in 1769, the infamous
chess-playing automaton The Turk was exposed as a hoax (Levitt, 2000). Since the rise of digital
computation in the 1950s, it has become commonplace to play chess against a computer instead of
a person: in Programming a Computer for Playing Chess, Shannon (1950) outlines the suitability
of a computer program playing a game of chess, stating that the well-defined rules and structure of
chess fit well into the digital nature of modern computers.

The prevalence and performance of chess-playing computer programs have increased dramatically
with the exponential rise of computational power. In 1997, a computer beat the reigning chess
world champion for the first time, in the controversial match between IBM’s Deep Blue and Garry
Kasparov (IBM, 2012). Chess programs can now consistently beat even the best chess players,
such that human-computer matches no longer attract attention from the media.

1.1 Motivation

Until recently, the challenge of a chess-playing computer has not been extended into the physical
domain: a computer/machine performing all of the functions performed by a human in a game of
chess, including observing the opponent’s move and physically moving pieces on the board. This
project revolves around an aspect of this, namely analysing visual information of the chessboard
in order to infer the state of the game, which can then be used to pick the next move which the
machine will play.

To a layperson, it may seem a trivial task to determine the state of a chessboard from an image
or video; however, as seen in Figure 1, factors such as lighting can make it extremely difficult to
detect moves being played. In this case, the move being played is e2e41 but this cannot be seen
clearly in the difference between the two frames, shown on the right.

Humans are able to perform sensory recognition very well due to an understanding of the world
around them. Typically, a computer vision application is unable to take this top-down approach
as it does not ‘know’ enough about its environment. However, within the constrained domain of a
chess game, it is possible to make use of this approach, as will be shown in this project.

Figure 1: Chess move e2e4, depicted by the frame before, frame after and the difference.

1Move denoted by UCI notation, explained in Section 2.3.2

1

1.2 Aims and Objectives

This project aims to research and develop a robust computer vision system for a chess-playing
robot, which encompasses the following challenges:

• Detect the position of the chessboard
• Detect when a move is being played and has been played
• Detect which move has been played

The focus of the project lies in the last point; given the position of the board and the time a move
has been played, the system will return the move made by the player and optionally a move to be
next played by the machine. Although the system is specified to be for a chess-playing robot, the
same principals apply whether the robot is actually playing a move, or the system is just detecting
moves made by two human players. If the system is to be used in conjunction with a robot, the
inferred board state will be passed to a chess engine in order to instruct the robot which move to
make next.

Existing implementations of chess vision systems rely on a number of constraints on the board,
camera and environment; it is the aim of this project to reduce the number of constraints so that
anyone can use the system with no specialist equipment, and it will still perform as accurately as
in testing. In order to do this, no presumptions will be made regarding lighting, the resolution of
the webcam or the chess board used.

1.3 Applications

The main application for this project is a chess-playing robot. However, there are many other
applications which would benefit from such a system. These include,

• Automated chess game annotation: currently games are either annotated by using a specialist
board, or a person writes down every move made.

• Teaching chess: as the system keeps track of the game state, it would be possible to teach
someone how to play chess on the fly, for example through a connected app.

1.4 Report Structure

The report begins by exploring the main themes of computer vision which may be of interest for
this project, namely change detection (of a similar vein to background subtraction) and object
recognition or classification; existing chess vision systems will be researched, documenting their
process and the constraints and outcome of the systems; essential background topics will be covered,
including an insight into the technology to be used and the required understanding of chess.

Following this, the report dives deeper into the methods used to detect players’ moves, and how
the system will be designed and tested with some performance measure. Finally, the outcome of
the system is evaluated and conclusions are drawn as to its success.

2

2 Literature Review

This chapter begins by discussing relevant computer vision techniques which can be applied to the
problem. Computer vision tools are compared, as well as the available chess libraries, engines and
interfaces which will bring the project together. Finally, existing computer vision systems designed
for chess games will be researched, to understand their use of computer vision to determine the
state of a chessboard.

2.1 Applicable Computer Vision Techniques

A computer vision system aims to mimic the human visual system in the form of a computational
model and to perform some of the tasks which the human visual system can perform (Yang, 2009).
Two approaches will be explored for determining the state of the chessboard, either:

1. Detect which cells have changed, and hence which move has been made, or
2. Classify each piece currently on the board, without necessarily using prior knowledge.

Two computer vision techniques are applicable to these approaches: change detection and object
recognition.

2.1.1 Change Detection

As defined by Computer Vision LAB (2013), change detection is the detection of “significant” change,
where a “significant” change corresponds to variation in the imaged scene’s geometry. Change
detection can be applied to both still photos taken over time, or to video; real-life applications of
change detection range from video surveillance to submarine environment mapping (Bouwmans
and Garcia-Garcia, 2019).

However, often only a small subset of the changes detected by a computer vision system can be
attributed to a change in the scene’s geometry. Possible disturbance factors which may affect
real-world applications include:

• Image noise
• Scene illumination changes:

– Global illumination changes e.g. a light being turned on
– Local illumination changes e.g. shadows cast by the observed objects

Image noise is random variation in brightness or colour information of an image, and is usually an
aspect of electronic noise, produced by the sensor or circuitry of a digital camera (Farooque and
Rohankar, 2013).

Image noise is problematic for many computer vision systems, and denoising techniques such as
linear smoothing filters are employed to reduce its impact. However, scene illumination changes
will pose a larger problem for a chess vision system; whereas image noise only causes a slight
variation in pixel intensity, factors such as a person walking past the chess game or a light being
turned on would cause a dramatic change across a large proportion of the chessboard. The most
simple form of change detection looks solely at the changes in pixels between images. However this
technique is heavily influenced by factors such as lighting, so other features are often used such as
edges, contours, corners and other prominent points in the image.

3

2.1.2 Object Recognition

Object recognition is a computer vision technique concerned with identifying objects in an image,
from a set of known labels (MathWorks, 2019). Humans have the ability to observe an object and
immediately infer the identity or category of the object, regardless of variation in appearance due
to position, lighting and other factors. From an early age, children are able to generalize an object
based upon its characteristic features: for example, after seeing a few examples of a chair, children
would easily be able to distinguish a chair from a table (Yang, 2009).

Although a trivial task for humans, this represents an incredibly complex problem for computers.
Some of the major challenges found in object recognition are similar to those found in change
detection. Jain, Kasturi and Schunck (1995) define these as:

• Varying illumination
• Perspective of the object due to viewpoint
• Object deformation e.g. how large the object is
• Occlusion of the primary object

As well as these, an important factor for any classification system (but especially relevant for a
chess vision system) is intra-class or within class variance. This is the variance that occurs within
a class of the same object; for example, chess sets may differ dramatically in appearance, from the
board itself to the pieces, but represent exactly the same game.

A straightforward comparison between a reference image and the image to be classified would
not work because of these factors. Therefore certain features must be extracted from the images
which are invariant to these changes. These features may be general to an object, for example,
the average intensity of the object, or may refer to local features on an object; for example, the
presence of an edge at a certain point.

2.2 Computer Vision Tools

There are many computer vision tools suited to a project of this ilk. Three viable tools were
researched:

• OpenCV Python
• OpenCV C++
• MATLAB’s native libraries

Each tool and programming language has its advantages and disadvantages. MATLAB is a powerful
matrix library by nature, whereas Python and C++ would require libraries such as numpy (for
Python) in order to provide fast algorithms for large matrix manipulation. Python, however, has
become the predominant language for scientific computing; Python libraries such as OpenCV,
dlib, numpy, scipy, scikit-learn and matplotlib provide a powerful environment for learning and
experimenting with computer vision and machine learning.

Given the author’s prior experience in Python, the project will be undertaken using predominantly
OpenCV in Python, with additional libraries used as needed, for example, scikit-learn for object
classification. The functionality OpenCV provides which may be useful for this project includes
Canny edge detection, finding chessboard corners2, Hough line transform and other methods for
feature extraction.

2Commonly used for camera calibration

4

2.3 Chess Software

Since the advent of computers, the idea of playing chess against a computer has become increasingly
popular. This has led to a wide range of chess libraries and engines, in order to support computer
chess programs written in any language.

2.3.1 Chess Libraries and Engines for Python

This project will require a chess library in order to assess the possible legal moves which a player
can make. The most obvious choice for Python is the python-chess library, distributed in the
Python Package Index. As described by its creator, python-chess is a “pure Python chess library
with move generation, move validation and support for common formats” (Fiekas, 2019). The
project is well-supported by its maintainers and is available open source on GitHub. In particular,
python-chess will be useful for maintaining the state of chess games, and for listing the legal moves
a player can make.

In addition to the python-chess library, a chess engine will be used in order to make moves on
behalf of the chess-playing robot. A chess engine is a computer program which analyses the board
and decides on the best move to make. The top chess engine in the world is Stockfish3, according
to the Computer Chess Rating Lists (2019). Stockfish is an open source project with an interface
for Windows, Mac, Android and Linux. Although it does not explicitly provide an interface for
Python, two third-party Python packages have been created for this purpose. If these packages
do not function as intended, it is possible to interface with Stockfish via the standard input and
output streams.

2.3.2 Universal Chess Interface

There are many ways to record the moves of a chess game, including algebraic chess notation,
descriptive chess notation, ICCF numeric notation, Smith notation and coordinate notation.
Algebraic chess notation is the official notation of FIDE which must be used in all recognized
international competition involving human players (Schiller, 2003).

Algebraic chess notation is used to describe the moves made in a chess game using a coordinate
system to uniquely identify each square on the chessboard. The columns on the chessboard, called
files, are labelled a to h from the white’s left to right. The rows, called ranks are numbered 1 to 8
starting from the white’s side of the board.

(a) e2e4 (b) e7e5 (c) e1g1 (d) e7e8q

Figure 2: Four examples of UCI notation of chess moves.

3https://stockfishchess.org/

5

A variant of algebraic notation is long algebraic notation, which specifies the starting and ending
square separated by a hyphen, e.g. e2-e4. A form of long algebraic notation (albeit without the
hyphens) is used by the Universal Chess Interface (UCI) (Kahlen, 2004). Released in November
2004, the UCI is an open communication protocol that enables chess programs to communicate,
often between a graphical interface and a chess engine. Examples of UCI notation can be seen in
Figure 2, where the faded pieces illustrate the previous position of the piece.

2.4 Existing Computer Vision Systems for Chess

Koray and Sümer (2016) present a real-time system that detected moves played in a chess game,
using MATLAB. Firstly, their system detects the chessboard using the detectCheckerboardPoints
function of MATLAB, before applying geometric rectification to map the board onto a square
8 by 8 grid. Their system relies on the orientation of the board, i.e. pieces being on the left-
and right-hand sides of the camera. After this, Koray and Sümer propose an automatic camera
exposure algorithm that aims to find the optimum exposure level which maximizes the average
of the colour differences between light/dark piece and square. After applying this algorithm and
other adjustments, the average colours of pieces and squares are taken as a reference for subsequent
processing; their approach classifies four reference colours, namely

1. Black square
2. White square
3. Black piece
4. White piece

The implementation of move detection is based on the comparison between a reference image
of the board (from which the average colour values were obtained) and a snapshot of the board
throughout the game. A region of interest (ROI), defined as 25px by 25px in the centre of each
square, is used to determine what colour the piece is. The average colour in the ROI of each square
on the chessboard is calculated, and these values are compared by means of Euclidean distance in
Lab colour space4 in order to classify them into one of the four classes. The chessboard state of
the last snapshot is obtained; this is then compared to the previous chessboard state in order to
deduce which move has been played.

The system designed by Koray and Sümer works well, successfully detecting 162 out of 164 moves,
over three games in different illumination conditions. However, the system is heavily constrained
by the position of the camera, the orientation of the board, the chess set used, and the illumination
of the environment. As stated in their discussion,

The combination of the lighting, camera settings and chess set are playing a big role in
the success of detecting moves in a chess game. Although the proposed system works
well under different illumination conditions, lighting environments (having a single light
source) that cast strong shadows over the board are unsuitable for tracking.

In a similar paper, Sokic and Ahic-Djokic (2008) discuss the design for a simple low-cost computer
vision system for a chess-playing robot. Their proposed design is similar to that of Koray and
Sümer, however, it uses edge detection as a means to calculate if a cell is occupied or not. Sokic
and Ahic-Djokic’s experiments with edge detection on several frames showed that edge detection
processed frames are less sensitive to shadow and environment light changes, which reduced error
rates in move detection. The success rate of chess move recognition was up to 99%, in good
lighting conditions. Lower rates (down to 75%), were due to low camera quality, low brightness,
and “exceptionally unfavourable” shadows.

4CIELAB colour space, also known as CIE L*a*b* or sometimes abbreviated as simply “Lab” colour space

6

3 Requirements and Analysis

The goal of this project is to create a computer vision system which can correctly identify the moves
played in a chess game. As previously discussed, a computer vision system for a chess-playing
robot must be able to carry out the following tasks:

• Locate the position of the chessboard
• Detect when a move is being played, and has been played
• Classify which move has been played

Although the ideal implementation would be able to complete all of these tasks fully autonomously,
none of the tasks are trivial. Therefore, this project will focus on the latter: deciding which move
has been played. The system should be wrapped in some form of graphical user interface (GUI),
so it is intuitive and usable for both testing and demonstrative purposes.

3.1 Finding and Rectifying the Board

Instead of automatically identifying the corners of the board, this task can be side-stepped by
manually inputting the coordinates of each corner of the board. To ensure this isn’t a cumbersome
task for the user, the GUI should allow the user to click each corner of the board, and the system
should calculate the corresponding raw coordinates. The system should then rectify the board, by
mapping the chosen coordinates onto a square 8 by 8 grid.

There are downsides to manually inputting the location of the chessboard: if the board moves
during the game, this will not be accounted for by the system, which could potentially impact the
move detection. If this problem becomes apparent during testing, it would be possible to mitigate
this by tracking the corners of the board after they have been inputted.

3.2 Detecting When Moves Have Been Played

It is very common for chess players to use a chess clock, which measures the time each player has
taken to move. The United States Chess Federation (2015) provides an explanation of a chess
clock:

A chess clock is actually two clocks! When you’re thinking, your clock ticks down.
After making a move, you hit a button at the top of the clock and your opponent’s
clock starts ticking. . . There are two main types, the digital and analog clock.

If the players are using a chess clock, it would be a simple task to set a trigger between the clock
and the computer vision system; when a player hits their clock, the system knows that player has
finished their move. Therefore, this project will expose a trigger (for example, an API5 call) to
indicate that a player has made a move. This project will not implement the interface between the
chess clock and the computer (and the use of additional hardware should not be assumed), so will
replace this with a button in the user interface, which will call the trigger in the API.

If the timestamps of each move in the game are known, it is then possible to build a sequence of
keyframes, almost like a storyboard, showing the progress of the game as moves are made. This
provides a layer of abstraction away from the raw video, allowing the system to make decisions
based purely on consecutive keyframes.

5Application Programming Interface

7

3.3 Classifying Which Moves Have Been Played

After a player has had their turn, the system should be able to detect which move they have played.
This should use some combination of change detection and object classification. In conjunction
with these techniques, the system will interface with the python-chess chess library – by passing
the state of the game into the library, the library can return the legal moves which will be used to
infer what move has been played.

3.3.1 Classifying Moves Using Change Detection

If the initial state of the chessboard is known, the individual pieces do not need to be identified.
In order to use a change detection-based approach, the raw video must first be split into frames, as
discussed in Section 3.2. After a move has been played, the subsequent state of the board can be
found by observing which cells have changed since the previously recorded keyframe.

The most obvious method would be to take the absolute difference between consecutive keyframes,
|keyframen − keyframen−1|. However, as seen in Figure 1, the difference between frames can be
very subtle and is heavily influenced by changes in lighting, such as someone moving next to the
board. Therefore, the cells which have changed the most do not necessarily represent the move
made.

Other comparative measures between keyframes will be explored, such as Canny edge detection,
and measurements in colour space as seen in Koray and Sümer (2016).

3.3.2 Classifying Moves Using Object Classification

A naïve and expensive solution to an object classification-based approach would be to train a
classifier to recognise every chess piece from the webcam above the board. However, this would
require the classifier to be trained on lots of training data, across many different chess sets (otherwise
this would constrain the user to a particular chess set). Despite chess pieces being easily recognised
by humans, the visual cues used to identify a piece are often subtle – for example, a bishop is often
recognised by the slit in the head of the piece. From overhead, it is especially hard to determine
which piece is which, as can be seen in Figure 3.

(a) Pawn (b) Rook (c) Knight (d) Bishop (e) Queen (f) King

Figure 3: White and black chess pieces from overhead.

8

For this reason, it would be infeasible to train a classifier to identify individual pieces without a
large quantity and variety of training data. A more reasonable solution would be one which could
be used in conjunction with change detection: using object classification to identify only the colour
of the square and the piece within the square. Each square of the chessboard would be classified
into one of the following six classes:

1. Empty black square
2. Empty white square
3. Black piece on black square
4. Black piece on white square
5. White piece on black square
6. White piece on white square

In the starting frame of a chess game, there are 64 squares, made up of 16 of each empty square
and 8 of the latter four classes. This is enough information to train the chosen classifier. A
simple classifier to use would be a nearest neighbours algorithm, however, if this does not produce
satisfactory results, other algorithms implemented by the scikit-learn python library will be tested.

3.3.3 Detecting the Players’ Hands

An alternative approach to the problem is the possibility of tracking the players’ hands throughout
the game. The position of each player’s hand can be used to deduce roughly where the move was
played, for example by applying a binary mask to where the player’s hand has been. As it is not
possible for a player to make a move without holding the piece, the only available moves are those
in which both squares are contained within the binary mask. The length of time that a player’s
hand rests over a position may also be indicative of the move made.

Although this solution may yield good results, it is the last resort for the implementation of this
system; whereas the previous methods discussed only require certain frames from the raw video,
this method would require every video frame. This is likely to make the system harder to test over
lots of data and consequently less robust to changes to the board or environment.

3.4 Data Collection and Annotation

In order to successfully evaluate the performance of the system, a large amount of video data must
be available. Two options are available for gathering this data: either manually film games of chess
or simulate games using 3D modelling software, such as Blender6.

3.4.1 Manually Filming Chess Games

Collecting the necessary amount of data manually would require filming hours of chess games.
Despite being a tedious task, this would produce the most relevant data, as it is exactly what the
system is designed for.

In order to speed up this task, ethics approval has been obtained to film others playing chess;
this will allow the author to approach the University of Sheffield Chess Society, who hold weekly
meetings, in order to obtain more data which can be used to train and/or test the system. The
information sheet and user consent form can be found in Appendices A and B respectively. The
ethics application and approval letter can be found in Appendices C and D.

6https://www.blender.org

9

If the video data is collected manually, the data will also need to be annotated manually. It may
be possible to speed this up by creating a section of the GUI specifically for annotating games of
chess, with an easy to use interface and the option to speed up video data.

3.4.2 Simulating Chess Games

If filming chess games manually becomes too arduous, or an unexpectedly large amount of footage
is needed to train the system, it may be viable to simulate videos of chess games. Using 3D
modelling software, such as Blender, it would be possible to render thousands of keyframes which
the system could be trained upon; the problem would be modelling the chessboard to be as realistic
as possible.

If the simulated videos were not representative of real footage, there would be a possibility of
overfitting the system to the training data. This is explained in further detail in Section 3.5.2.

3.5 Testing and Evaluation

In order to determine the success of the computer vision system, it must be evaluated comprehen-
sively in various situations. The first decision to be made is the evaluation measure – what measure
will best evaluate the accuracy of the system and can be used to compare different configurations
or versions. Configurable parameters and testing sets are discussed, as well as how to test the
system’s limits.

3.5.1 Performance Measure

The most obvious performance measure is the percentage of correctly identified moves across a
number of chess games. However, if the system incorrectly identifies a move towards the beginning
of a game, this would negatively impact its perceived performance throughout the rest of that game.
This would be a poor performance measure, as it is dependent on when a move occurs in the game.
Instead of measuring the accuracy across all moves in the game, the system must evaluate each
move individually throughout the game; after the move has been evaluated, the system must then
correct the move, in order to avoid the incorrect classification of further moves. This performance
measure will accurately assess the system’s performance over a game, independent of when a move
is incorrectly identified.

3.5.2 Parameters and Testing Sets

The computer vision system will be based on configurable parameters, which will be tuned to find
the optimum solution. When tuning parameters, it is possible to overfit the parameters to the
data which the system is being trained upon: although the accuracy of the system may seem to be
improving when applied to the training set of data, this may not be the case when it is applied
to new, unseen data. In order to prevent overfitting when tuning the parameters of the system,
K-fold cross-validation will be employed.

10

The following K-fold cross-validation method will be used.

1. Split the data into K sets.
2. For each unique set:

i. Hold out the set for testing.
ii. Take the remaining sets as the training set.
iii. Find the optimum parameters for the training set.
iv. Evaluate the parameters on the test set.
v. Retain the evaluation score and discard the parameters.

3. The final evaluation score can be found by the average of the K intermediate evaluation
scores.

3.5.3 Testing the System’s Limits

The system should be tested thoroughly to find the limits of its capability, an indication of how
robust the system is. This will require recording video of chess games outside of the ‘reasonable’
boundaries, for example from extreme angles. Therefore the collected data must include videos
which are varied in respect to:

• Angle of webcam in the vertical plane
• Angle of webcam in the horizontal plane
• Lighting conditions

The overall performance of the system will be determined by its accuracy on the subset on videos
which represent a ‘reasonable’ scenario, one which has good lighting and where the camera is
pointing down at the board from near vertical. The system will also be tested on the subset of
videos which do not constitute a reasonable scenario, in order to test its limits.

11

4 Design

This chapter covers the design of the system, to match the requirements of the system as specified
in Chapter 3. First, an overview of the application structure is presented, before diving deeper
into each respective part of the system.

4.1 Application Structure

In order for the system to be useful to a wide audience, the system should be platform-agnostic7.
Therefore, this project will be implemented as a web application, sat upon the Python back-end;
the back-end of the system will comprise the computer vision system and a server. The front-end
of the system will be created using a front-end framework, discussed in Section 4.4.

Figure 4 shows the communication between the components of the system. As shown by the API
calls, the system will be loosely-coupled between the front-end and the back-end; this is important
because it enables the portability of the system to another platform8.

General user

Back-end server

Front -end serverBrowser

API call

API call

API user

Computer vision
system

Figure 4: Diagram showing the structure of the application.

4.2 Computer Vision System

The main part of the system, the computer vision system should be able to take raw video from a
webcam and output the game state. So that the computer vision system is modular, it will be
written in the form of a Python package.

A python package typically has the structure shown in Figure 5. The setup.py file sets up the
package ready to be imported by other applications; the __init__.py file is the entry module to
the package, where classes will be exported. Finally, there exist Python modules (in this case only
one, module.py) which contain the main code of the system.

7Works on any operating system (within reason)
8A new application could be built for the system without changing any of the back-end code

12

package/
package/

__init__.py
module.py

setup.py

Figure 5: Typical structure of a Python package (Torborg, 2019).

It is expected that this project will require a fairly large amount of code, so the project will be
designed using the object-oriented programming (OOP) paradigm. This will ensure the program is
modular and maintainable. In order to ascertain the various classes needed, first we must step
through the basic approach:

1. Load the given webcam device or video file.
2. Crop the video to the chessboard.
3. Continuously read frames from the webcam or file.
4. When a move is made, save the current frame.
5. Compare the last two saved keyframes, to find the move made.
6. Return the move made, and push it to the chess state.

Reading frames from the webcam or file should be a threaded operation9, so the program can
both read frames and process frames at the same time; this will ensure that the video is processed
in real-time. Care must be taken to write thread-safe code, meaning problems will not arise if
multiple threads attempt to mutate a data structure at the same time. As the Python classes
in this program will share the video frames across threads, the frames will be stored in a ‘frame
buffer’, implemented by a Python List data structure.

Game state

ChessVisionSystem

VideoReader FrameBuffer

Webcam or f i le

Threaded

ChessVision

EventL ist

Config

Figure 6: ChessVisionSystem class interaction.
9An activity that is run in a separate thread of control (Python Software Foundation, 2019)

13

The class structure of the Python package will be implemented as shown in Figure 6. The main class
of the system will be the ChessVisionSystem class; in this application, the server will instantiate
the computer vision system by creating an object of this class. It can optionally take a Config
object, which will be used to test the system over multiple configurations. The ChessVisionSystem
will then create three new objects: a VideoReader, which will read frames from the webcam or file
in a new thread; a FrameBuffer, used to store the read frames; and a ChessVision object, which
will compare the two previously saved keyframes and push the move made to the game state. An
EventList object will be referenced by the VideoReader and ChessVision objects, to store the
events which happen during runtime, for example, loading and cropping the video, and recording
which moves occur.

4.3 Back-end Server

As the computer vision system will be made using Python, it would make sense to also use Python
for the back-end server. There are two popular frameworks for a Python-based server application:
Django and Flask. Django is a fully-fledged MVC framework “that encourages rapid development
and clean, pragmatic design. Django takes care of user authentication, content administration,
site maps, RSS feeds, and many more tasks – right out of the box” (Django Software Foundation,
2019). Django is aimed at larger applications, with the need for all of the out-of-the-box features
it provides.

Flask, on the other hand, is a “microframework” primarily aimed at smaller applications with
simpler requirements. As explained by the creators of Flask, the Pallets Team (2010),

“Micro” does not mean that your whole web application has to fit into a single
Python file, nor does it mean that Flask is lacking in functionality. The “micro” in
microframework means Flask aims to keep the core simple but extensible.

This makes Flask an ideal framework for a project of this ilk. The Flask server will act as an API
server, ensuring that the back- and front-end of the system can act independently.

4.3.1 Application Programming Interface

An application programming interface provides all the building blocks needed to create an applica-
tion, which can then be combined when creating the user interface; APIs are commonly provided
by both native applications and most server-based applications.

There are many protocol specifications for an interface of this kind, including SOAP10 and REST11.
RESTful APIs are the most common form, provided by the majority of technology products, for
example, Facebook, Twitter, Google products (e.g. Google Maps) and GitHub. Responses from a
REST API can be in the form of HTML, XML or JSON; an example of the latter, from GitHub’s
JSON REST API, can be seen in Figure 7.

10Simple Object Access Protocol
11Representational State Transfer

14

// API call to https://api.github.com/users/gregives
{

"login": "gregives",
"id": 23280125,
"avatar_url": "https://avatars0.githubusercontent.com/u/23280125?v=4",
"type": "User",
"site_admin": false,
"name": "Greg Ives",
"company": null,
"blog": "https://gregives.co.uk",
"location": "Sheffield, UK",
"public_repos": 2,
"public_gists": 0,
"followers": 18,
"following": 14,
"created_at": "2016-11-05T15:27:23Z",
"updated_at": "2019-04-18T17:02:37Z"

}

Figure 7: An extract of JSON response from GitHub’s REST API (api.github.com).

The back-end server of this application will expose a REST API which will control the computer
vision system. The various API endpoints will be able to control video playback, for example
playing and pausing the video, cropping the video to the chessboard, and an endpoint to indicate
when a move has been played. These will adhere to the typical REST architecture, as shown in
Table 1.

Resource Method Description
/devices/ GET Return the available webcam devices
/videos/ GET Return the uploaded videos
/videos/ POST Upload a new video file
/videos/:video/load POST Load the video with the given configuration
/videos/:video/pause POST Pause or unpause the video
/videos/:video/crop POST Crop the video to the given coordinates
/videos/:video/move POST Return the move just played
/videos/:video/stream/:type GET Return the video stream of the given type
/videos/:video/frame/:type GET Return a single video frame of the given type

Table 1: Design of the REST API, showing endpoints and their function.

15

4.4 Front-end Graphical User Interface

The front-end server, shown in Figure 4, will serve a reactive web application to the client. There
are many JavaScript frameworks available to build web applications effectively, such as React12,
Angular13 and Vue14. Vue is a perfect choice for this application as it is very versatile, allowing
you to start with only the basic parts of a Vue application, and include new features as the project
develops; as explained on Vue’s Introduction page (2019),

Vue (pronounced /vju:/, like view) is a progressive framework for building user inter-
faces. Unlike other monolithic frameworks, Vue is designed from the ground up to be
incrementally adoptable.

In conjunction with Vue, the front-end of the application will be created with Bootstrap, the
most popular HTML, CSS, and JS library in the world (Bootstrap Team, 2019). This will enable
the application to be created quickly using Bootstrap components, whilst maintaining good user
experience and accessibility. BootstrapVue15 provides a comprehensive implementation of Bootstrap
components for Vue, without Bootstrap’s original dependency on jQuery.

4.4.1 Prototypes

Firstly, an initial rough prototype was created to get a feel for the dashboard layout, shown in
Figure 8. The dashboard includes 3 ‘panes’: the leftmost pane displaying the live video feed of
the chessboard, the middle pane showing the various filters which will be applied to the video
(e.g. difference between frames, edge detection) and finally the rightmost pane which will show the
output of the computer vision system, the state of the chess game. Controls for the video playback
will lay immediately below the video feed.

Figure 8: Initial rough prototype of the web application.
12https://reactjs.org
13https://angular.io
14https://vuejs.org
15https://bootstrap-vue.js.org

16

Following the initial rough prototype, the dashboard has been implemented using HTML and CSS
with the Bootstrap framework, as shown in Figure 9. This gives a firmer idea of what the final
user interface will feel like and allows preliminary connection with the API server. As the project
continues, the dashboard will likely evolve with it, to incorporate new features and improve its
usability, but the initial theme will be retained.

Figure 9: Prototype of the web application created with Bootstrap.

4.4.2 Live Video Streaming

Essential to this web application is the ability to stream video from the back-end server to the
front-end. A blog post, Video Streaming with Flask (Grinberg, 2014), shows a proof of concept,
however key to this project is the integration of OpenCV. The example code in the blog post
was adapted to read video data from the webcam using OpenCV; the minimal amount of code to
achieve this can be seen in Appendix E.

17

5 Implementation and Testing

Having discussed the requirements and design of the system in the previous chapters, this chapter
discusses the final implementation of the system. The computer vision system is presented,
screenshots are provided of the graphical user interface, the final API server is documented and
the evaluation of the system is discussed.

5.1 Computer Vision System

The computer vision system employs both edge detection and the K-nearest neighbours algorithm
for classifying which move has been made. The function used to detect which move has been made
is as follows:

1. Retrieve the two previously saved frames, keyframen and keyframen−1.
2. Apply the K-nearest neighbours algorithm to keyframen and retain the resulting probabilities.

For each square of the chessboard:
i. Find the average intensity and variance of the square, optionally applying padding

to the edges of the square. The average intensity and variance denote the square’s
coordinates in feature space.

ii. Take the 8 nearest neighbours of the square in feature space, using Euclidean distance
as the distance metric.

iii. The probability of the square being of a certain class is proportional to the number of
neighbours of that class. For example, if 4/8 neighbours are an empty white square, the
current square has a 0.5 probability of also being an empty white square.

3. Apply the Canny edge detection algorithm to the chessboard. For each square, find the
difference between the number of edges in keyframen and keyframen−1.

4. Find the probability of each possible move occurring. For each possible legal move:
i. Find the probability of the move according to the K-nearest neighbours algorithm.

a. Find the probabilities of each square being correct using the probabilities calculated
in step 2.

b. Average the probabilities of each square to find the probability of the whole chess-
board being correctly classified by the K-nearest neighbours algorithm.

ii. Find the probability of the move according to the Canny edge detection algorithm. Take
the absolute difference of the square which the piece is moving into, and negate from
this the difference of the square which the piece has moved from.

iii. Multiply the two previous probabilities for the move, as determined by the K-nearest
neighbours algorithm and by Canny edge detection.

5. Return the move with the highest probability.

5.2 Graphical User Interface

The user interface, in the form of a web application, has been implemented with Vue and Boot-
strapVue. It acts as a client of the back-end API, rather than a tightly-coupled application. The
interface provides a dashboard comprising of three pages: a demonstration page, an annotation
page and a testing page. The user can select the desired page in the navigation bar.

On the left of all pages, the user can select the video file(s) or webcam device which they wish to
run the computer vision system on. The design has remained mostly the same as that discussed in
Section 4.4.1, with a three-pane layout on the right of the file picker. Extra features have been
added such as greater control of video playback and the pages for annotation and testing.

18

5.2.1 Demonstration Page

Shown in Figure 10, the demonstration page outlines the process of the computer vision system.
The leftmost pane includes a video playback component, with a live video feed of the chessboard
and several controls. An explanation of the process is explained to the user:

1. Crop the frame to the chessboard.
2. Calibrate the board.
3. Click Get move when a move is made.

The central pane shows the filters applied to the keyframes. The first row of images shows the raw
video in grayscale, with the previous frame, current frame, and the absolute difference of the two.
The second row shows the frames with Canny edge detection applied to them.

The rightmost pane of the demonstration page shows the outputted state from the computer vision
system. An event list displays information such as when the video has been loaded and cropped,
as well as the moves which have been classified. Above the event list is the chess state, displayed
using chessboard.js16, a standalone JavaScript chessboard.

Figure 10: Screenshot of the demonstration page.

5.2.2 Annotation Page

The annotation page allows users to easily annotated videos of chess games. As shown in
Figure 11, the annotation page retains the video playback and outputted state components
as the demonstration page. However, it introduces two annotation components in the central
pane; when a move is made, all possible moves are displayed along with the system’s estimated
probability of each move having occurred. When the user clicks the move which has been made,
the move is recorded in the annotation file for the respective video. The list of annotated moves is
also shown on the page, allowing the user to delete an annotation if required, for example, if a
mistake has been made.

16https://chessboardjs.com

19

Figure 11: Screenshot of the annotation page.

5.2.3 Testing Page

The testing page allows the user to test the computer vision system on multiple files in parallel,
with their chosen configuration. The configuration pane initially displays the default values of
the system’s configuration: these values can be changed in order to tune the system, in order to
find the optimum solution. When the desired configuration has been set up, clicking ‘Run tests’
will send a request for each selected file to be run asynchronously, and will update the percentage
success of each video when they have completed.

5.3 API Endpoints

The application programming interface allows the front-end of the system to interact with the
computer vision system; in this case, the front-end of the system is the web application built with
Vue, however other applications could be easily built to act as a client of the system.

As the project grew, the number of endpoints available to the client also grew, to allow for greater
control of video playback and new features. In particular, new endpoints were created for:

• Rewinding and forwarding the video playback, to speed up annotation.
• Calibrating the board, to rotate the white pieces to the bottom.
• Annotating the videos, to record the position of the chessboard and the moves played.
• Returning the default configuration of the system, for the testing page.

The endpoints of the final API can be seen in Table 2, with the newly added endpoints highlighted
in blue.

20

Figure 12: Screenshot of the testing page.

Resource Method Description
/devices/ GET Return the available webcam devices
/videos/ GET Return the uploaded videos
/videos/ POST Upload a new video file
/videos/:video/load POST Load the video with the given configuration
/videos/:video/pause POST Pause or unpause the video
/videos/:video/restart POST Restart the video playback
/videos/:video/backward POST Rewind the video playback by 5 seconds
/videos/:video/forward POST Forward the video playback by 5 seconds
/videos/:video/crop POST Crop the video to the given coordinates
/videos/:video/calibrate POST Calibrate the board
/videos/:video/move POST Return the probability of moves just played
/videos/:video/play POST Play the given move
/videos/:video/annotate POST Update the video annotation
/videos/:video/annotation GET Return the annotation for the video
/videos/:video/stream/:type GET Return the video stream of the given type
/videos/:video/frame/:type GET Return a single video frame of the given type
/config/ GET Return the default configuration values

Table 2: Final endpoints of the API and their function, after implementation.

21

5.4 Evaluation of the System

Perhaps the most important part of this project, the computer vision system must be well-tested
so as to ascertain the accuracy of the system and determine the successfulness of the project’s aims
and objectives.

5.4.1 Chess Game Annotation

In order to easily evaluate the system’s performance over multiple video files at once, and to allow
for custom configuration of the system, an annotation framework was built. At the heart of this is
the VideoAnnotation class, which was created in addition to the original class hierarchy discussed
in Section 4.2. The VideoAnnotation class encompasses three things:

• The position of the chessboard, denoted by an array of coordinates.
• The time at which the chessboard should be calibrated (to ensure the board is not obscured

by, for example, a player’s hand).
• The moves made in the game, stored as a dictionary which maps moves to the time they

were made.

This class is mirrored by an annotation.json file, which is updated every time an annotation is
made in the graphical user interface. An example annotation file can be seen in Appendix F.

5.4.2 Method of Evaluation

The system has been tested in three ways to determine the performance of the system and its
robustness. The set of videos used for the evaluation of the system consisted of 385 moves of chess,
over twelve games. Out of the twelve games, six games were played in normal conditions, the other
six videos were filmed from varying angles in both the horizontal and vertical planes. As discussed
in Section 3.5.1, for every move in a game the predicted move was compared with the annotated
move; the performance measure is the percentage of correctly identified moves.

Firstly, tests were carried out to find the effect that each configurable parameter had upon the
performance of the system. The three configurable parameters of the system were:

1. The upper threshold of the Canny edge detection algorithm
2. The amount of padding within each square of the chessboard
3. The processing resolution of the chessboard

Secondly, in order to determine the robustness of the system, the system was tested upon videos
taken from a range of angles and lighting conditions. When investigating the effect of lighting
condition upon the performance of the system, the collected data was not varied enough to test
the system’s limits. Therefore extra data was generated from the existing data by adjusting the
brightness and contrast of the videos in VLC media player17. Although this is not a perfect
representation of real-life lighting conditions, the generated data is sufficient to identify the trends
of the system’s performance. Observing the performance of the system across the range of angles
and varied lighting will provide an insight into what factors the system relies upon.

Finally, the overall performance of the system was found. Using the results of the previous tests,
the configurable parameters were tuned in order to produce the optimum solution. The tests were
ran using 5-fold cross-validation to ensure the results did not suffer from bias or overfitting.

17https://www.videolan.org/vlc

22

6 Results and Discussion

This chapter presents and discusses the results of the testing of the computer vision system, with
the aim of assessing its performance and robustness. Firstly, the effect of the system’s parameters
upon the performance of the system is found: these results inform the final tuning of the system in
order to improve its performance. Secondly, the effect of the environment upon the system is used
to indicate the system’s robustness. Lastly, the overall performance of the system is evaluated,
using a K-fold cross-validation method.

The standard error was calculated for each set of results by the equation
√

p(1−p)
n , where p is

defined by Correctly identified moves [%]
100 and n is the total number of moves in that test case. The

standard error ensures that the size of the test set is considered when evaluating the results of the
tests. Although the total test set consists of 384 moves, the data is from only 12 chess games and
the data within each game is expected to be highly correlated.

6.1 The Effect of the System’s Parameters Upon Its Performance

The three configurable parameters of the system were tuned to find their optimum values, which
corresponded to the highest percentage of correctly identified moves. After a parameter had been
tuned, the optimum parameter value was retained for the subsequent tests. Initially, the square
padding was set to 10% and the resolution was set to 512px.

The upper threshold of the Canny edge detection algorithm was varied between 0 and 255 in
intervals of 20. The effect of the threshold upon the accuracy of the system can be seen in Figure 13.
A low upper threshold can be seen to negatively impact the performance of the system. The
optimum threshold is around 80 – after this, higher thresholds decrease the performance.

0 20 40 60 80 100 120 140 160 180 200 220 2400

20

40

60

80

100

Upper threshold

C
or
re
ct
ly

id
en
tifi

ed
m
ov
es

[%
]

Figure 13: The effect of the upper Canny threshold upon the performance of the system.

Each square of the chessboard can be padded to avoid misclassification due to the occlusion of
pieces in adjacent cells. The effect of varying square padding can be seen in Figure 14. The
optimum padding seems to lay between 10% and 20% of the width of the cell. Less padding than
this will not prevent the occlusion of pieces; any more padding than this will reduce the information
available for edge detection and object classification.

23

0 5 10 15 20 25 30 35 40 45 500

20

40

60

80

100

Square padding [%]

C
or
re
ct
ly

id
en
tifi

ed
m
ov
es

[%
]

Figure 14: The effect of square padding upon the performance of the system.

The last parameter to be varied is the resolution of the chessboard. This resolution was varied
in powers of two from 16px all the way up to 512px; multiples of 8 were chosen to ensure each
square of the chessboard would consist of an integer number of pixels in width. The effect of
varying chessboard resolution can be seen in Figure 15. Increasing the resolution incurs a dramatic
increase in accuracy for lower resolutions, however as resolution increases past 128px this is less
pronounced. The optimum resolution was found to be 384px.

0 50 100 150 200 250 300 350 400 450 500 5500

20

40

60

80

100

Video resolution [px]

C
or
re
ct
ly

id
en
tifi

ed
m
ov
es

[%
]

Figure 15: The effect of video resolution upon the performance of the system.

After tuning these three parameters one by one, the same tests were run a second time using the
tuned parameters. The same trends were prevalent as before, implying that the three parameters
are independent of each other, therefore no further tuning was needed. In summary, the best
settings for the parameters of the system are: the Canny edge detection upper threshold set to
80; the padding of each square set to between 10% and 20%; and the resolution of the chessboard
at 384px. These optimised parameters were used when exploring environmental factors in the
subsequent section and were used when determining the overall performance of the system, in
Section 6.3.

24

6.2 The Effect of the Environment Upon The System’s Performance

Four factors were tested in order to assess the robustness of the system. This included the angle
of the webcam in both the horizontal and vertical plane, and the brightness and contrast of the
chessboard due to the lighting conditions. Figure 16 shows how the angle of the webcam, in both
the horizontal and vertical planes, affects the performance of the system. The vertical angle of
the webcam can be clearly seen to negatively affect the performance of the system at greater
angles from the vertical, i.e. closer to the playing surface. Despite the system only being analysed
on 14 moves at 70° from the vertical, with consideration of the standard error of the point, the
performance of the system clearly decreased.

The effect of the webcam angle in the horizontal plane was tested between 0° and 40°, with 0° being
parallel to the ranks of the chessboard. As seen in Figure 16, the horizontal angle of the webcam
has a negligible impact on the performance of the system; at all angles, the performance of the
system remained above 90%. The point at 40° shows a slight decrease in performance, however,
given the standard error this can be assumed to be a result of the small sample size.

0 20 40 60 800

20

40

60

80

100

Vertical angle [°]

C
or
re
ct
ly

id
en
tifi

ed
m
ov
es

[%
]

0 10 20 30 40
Horizontal angle [°]

Figure 16: The effect of webcam angle upon the performance of the system.

The negative impact of the vertical angle of the webcam on the performance of the system can be
expected, considering the occlusion of the chess pieces at greater angles from the vertical. Figure 17
shows the chessboard at the four angles tested in the vertical plane. When the webcam is placed
close to the vertical, there is no occlusion between pieces so the system performs at its best. When
the webcam is placed further from the vertical, the chess pieces start to overlap the square behind
them which causes the moves to be misclassified; the square padding helps to minimise this but
fails to prevent the problem at extreme angles.

(a) 10° (b) 30° (c) 50° (d) 70°

Figure 17: Screenshots of chess games at a range of vertical angles.

25

When determining the system’s dependence on certain light conditions, brightness and contrast
were measured. As previously discussed, in order to test the system on a sufficiently varied data
set (with respect to lighting conditions), some data was generated; on the subsequent graphs, the
limits of the real data is denoted by the dashed red lines.

In order to measure the brightness of the image, the average intensity across the chessboard was
calculated. This prevents the measurements being affected by objects next to the board, which are
not expected to affect the system’s performance. As shown in Figure 18, it was found that the
performance of the system remained roughly the same when varying the brightness of the board.
However, in extremely dimly lit conditions, the performance of the system decreased as many of
the black pieces were no longer visible.

0 20 40 60 80 100 120 140 160 180 200 220 2400

20

40

60

80

100

Average intensity

C
or
re
ct
ly

id
en
tifi

ed
m
ov
es

[%
]

Figure 18: The effect of brightness upon the performance of the system.

The contrast of the image was measured by the average variance across each square of the chessboard.
The effect of contrast upon the performance of the system can be seen in Figure 19; similar to the
effect of brightness, the system’s performance is only impacted at the extremes.

0 500 1,000 1,500 2,000 2,500 3,000 3,5000

20

40

60

80

100

Average variance

C
or
re
ct
ly

id
en
tifi

ed
m
ov
es

[%
]

Figure 19: The effect of contrast upon the performance of the system.

26

6.3 Overall Performance of the System

The overall performance of the system was found by using 5-fold cross-validation upon the set
of videos which constituted ‘reasonable’ conditions. As discussed in Section ??, the only factor
which consistently had a negative impact on the system’s performance was the vertical angle of
the webcam, so these videos were discounted. The remaining set of videos was split into 5 sets.

Often when using K-fold cross-validation it is recommended to shuffle the data set before splitting
into groups, to avoid the bias of each set. However, in this case, all of the moves within each video
are highly correlated: if these moves were shuffled, the training data would be very similar to some
of the data in the testing set. This would give a false impression of the performance of the system,
so it was decided to retain all moves in each video together in a set. The experimental results can
be seen in Table 3.

Set Number of moves correct Total number of moves Correctly identified moves [%]
1 41 45 91.1 ± 4.2
2 51 56 89.2 ± 4.1
3 57 57 100 ± 0
4 61 62 98.7 ± 1.4
5 53 53 100 ± 0
Total 263 273 96.3 ± 1.2

Table 3: Results of 5-fold testing on the overall performance of the system.

It has been shown that the average performance of the system is 96.3%, meaning that it should be
able to correctly identify 96.3% of moves within a chess game. Although the standard error of
the overall performance has been calculated to be

√
0.963×(1−0.963)

273 = 1.2%, this does not seem to
reflect the actual error seen across the 5 sets. This is again due to the highly correlated nature of
the chess games. In order to find the true performance of the system on any given chess game,
it may be prudent to instead take the number of samples as 5 i.e. the number of sets. Following
through with this calculation, the standard error is calculated as

√
0.963×(1−0.963)

5 = 8.4%, which
is much more representative of the error shown across the collected data set. Therefore, the overall
performance of the system may be better presented as 96.3% ± 8.4%.

27

7 Conclusions

The aim of this project was to create a computer vision system able to detect moves in a chess
game, with no presumptions made regarding lighting conditions, the chessboard, or the webcam
being used. This project has outlined the design of a system which successfully meets these criteria.

The problem of building a computer vision system which was as robust as it was performant posed
many challenges for the author. The literature review into existing computer vision systems for
chess provided valuable insight into relevant techniques used for change detection and classification.
In particular, the use of edge detection processed frames, proposed by Sokic and Ahic-Djokic,
greatly improved the robustness of the system to changes in shadows and lighting conditions. Using
this technique, coupled with the K-nearest neighbours algorithm, led to a system which correctly
identified 96.3% of moves within the collected set of chess games and was robust to a range of
lighting conditions and the horizontal angle of the webcam.

The development of the web application early in the process greatly helped with the development
of the back-end of the system, as changes to the move detection algorithm were immediately visible
in the graphical user interface. The use of Vue and Bootstrap enabled a rapid development process,
which would not have been possible if using solely HTML and CSS to create the web application.

Possibly the greatest challenge of this project was the collection of enough data in order to evaluate
the system’s performance accurately. The process of ethics approval to contact the university’s
chess society was a worthy investment for the amount of real-life data collected. If this project was
taken further, it may be worth generating test data using 3D modelling software, as discussed in
Section 3.4.2. If the simulated games were a good representation of real-life data, the system could
be tested much more thoroughly; this would allow for further exploration into novel algorithms to
detect the moves in a chess game.

In conclusion, this project has been challenging but very rewarding. The realisation of the system
shows promising performance, whilst ensuring that minimal constraints are placed upon it. There
is scope to see the project be taken further. With a larger set of chess videos to train the system
upon, new algorithms and techniques could continue to improve the performance and robustness
of the system, with the aim of creating a fully autonomous chess-playing robot.

28

References

Bootstrap Team (2019) ‘The most popular HTML, CSS, and JS library in the world.’, Bootstrap.
Available at: https://getbootstrap.com/ (Accessed: 20 April 2019).

Bouwmans, T. and Garcia-Garcia, B. (2019) ‘Background Subtraction in Real Applications:
Challenges, Current Models and Future Directions’. Available at: http://arxiv.org/abs/1901.03577
(Accessed: 13 April 2019).

‘Chess’ (2017) Encyclopædia Britannica. Encyclopædia Britannica, inc. Available at: https:
//www.britannica.com/topic/chess (Accessed: 11 April 2019).

Computer Chess Rating Lists (2019) ‘CCRL 40/4’, CCRL. Available at: http://ccrl.chessdom.com/
ccrl/404/index.html (Accessed: 11 April 2019).

Computer Vision LAB (2013) ‘Change Detection Algorithms’, Computer Vision LAB, DISI,
University of Bologna. Available at: http://vision.deis.unibo.it/research/78-cvlab/85-change-
detection (Accessed: 13 April 2019).

Django Software Foundation (2019) ‘The Web framework for perfectionists with deadlines’, Django.
Available at: https://www.djangoproject.com/ (Accessed: 17 April 2019).

Farooque, M. A. and Rohankar, J. S. (2013) ‘Survey on Various Noises and Techniques for Denoising
the Color Image’, International Journal of Application or Innovation in Engineering & Management
(IJAIEM), 2(11), pp. 217–221.

Fiekas, N. (2019) ‘Python-chess’. Available at: https://github.com/niklasf/python-chess (Accessed:
11 April 2019).

Grinberg, M. (2014) ‘Video Streaming with Flask’, miguelgrinberg.com. Available at: https:
//blog.miguelgrinberg.com/post/video-streaming-with-flask (Accessed: 20 April 2019).

Huang, T. S. (1996) ‘Computer Vision: Evolution and Promise’. Available at: http://cds.cern.ch/
record/400313/files/p21.pdf.

IBM (2012) ‘Deep Blue’, IBM100. Available at: http://www-03.ibm.com/ibm/history/ibm100/us/
en/icons/deepblue/ (Accessed: 13 April 2019).

Jain, R., Kasturi, R. and Schunck, B. G. (1995) Machine Vision. McGraw-Hill New York.

Kahlen, S.-M. (2004) ‘Description of the Universal Chess Interface (UCI)’, UCI protocol. Available
at: http://wbec-ridderkerk.nl/html/UCIProtocol.html (Accessed: 13 April 2019).

Koray, C. and Sümer, E. (2016) ‘A Computer Vision System for Chess Game Tracking’.

Levitt, G. M. (2000) The Turk, Chess Automation. McFarland & Company, Inc. Publishers.

MathWorks (2019) ‘Object Recognition’,MathWorks MATLAB. Available at: https://uk.mathworks.
com/solutions/deep-learning/object-recognition.html (Accessed: 13 April 2019).

Pallets Team (2010) ‘Foreword’, Flask Documentation. Available at: http://flask.pocoo.org/docs/
1.0/foreword/#what-does-micro-mean (Accessed: 17 April 2019).

Piccardi, M. (2004) ‘Background Subtraction Techniques: A Review’, in 2004 IEEE International
Conference on Systems, Man and Cybernetics. IEEE, pp. 3099–3104.

Python Software Foundation (2019) ‘Thread-Based Parallelism’, Python Documentation. Available
at: https://docs.python.org/3/library/threading.html (Accessed: 17 April 2019).

Schiller, E. (2003) The Official Rules of Chess. Cardoza Pub.

29

https://getbootstrap.com/
http://arxiv.org/abs/1901.03577
https://www.britannica.com/topic/chess
https://www.britannica.com/topic/chess
http://ccrl.chessdom.com/ccrl/404/index.html
http://ccrl.chessdom.com/ccrl/404/index.html
http://vision.deis.unibo.it/research/78-cvlab/85-change-detection
http://vision.deis.unibo.it/research/78-cvlab/85-change-detection
https://www.djangoproject.com/
https://github.com/niklasf/python-chess
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
http://cds.cern.ch/record/400313/files/p21.pdf
http://cds.cern.ch/record/400313/files/p21.pdf
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://wbec-ridderkerk.nl/html/UCIProtocol.html
https://uk.mathworks.com/solutions/deep-learning/object-recognition.html
https://uk.mathworks.com/solutions/deep-learning/object-recognition.html
http://flask.pocoo.org/docs/1.0/foreword/#what-does-micro-mean
http://flask.pocoo.org/docs/1.0/foreword/#what-does-micro-mean
https://docs.python.org/3/library/threading.html

Shannon, C. E. (1950) ‘Programming a Computer for Playing Chess’, Philosophical Magazine,
41(314).

Sokic, E. and Ahic-Djokic, M. (2008) ‘Simple Computer Vision System for Chess Playing Robot
Manipulator as a Project-based Learning Example’, in 2008 IEEE International Symposium on
Signal Processing and Information Technology, pp. 75–79. doi: 10.1109/ISSPIT.2008.4775676.

The United States Chess Federation (2015) ‘New to Chess? FAQ’, The United States Chess
Federation. Available at: http://www.uschess.org/content/view/7328/28/ (Accessed: 12 April
2019).

Torborg, S. (2019) ‘Python-packaging’. Available at: https://github.com/storborg/python-
packaging (Accessed: 16 April 2019).

Vue Team (2019) ‘Introduction’, Vue.js. Available at: https://vuejs.org/v2/guide/ (Accessed: 20
April 2019).

Wong, K. D. (2009) ‘Canny Edge Detection Auto Thresholding’, www.kerrywong.com. Available at:
http://www.kerrywong.com/2009/05/07/canny-edge-detection-auto-thresholding/ (Accessed: 29
April 2019).

Yang, M.-H. (2009) ‘Object Recognition’, in Encyclopedia of Database Systems.

30

https://doi.org/10.1109/ISSPIT.2008.4775676
http://www.uschess.org/content/view/7328/28/
https://github.com/storborg/python-packaging
https://github.com/storborg/python-packaging
https://vuejs.org/v2/guide/
http://www.kerrywong.com/2009/05/07/canny-edge-detection-auto-thresholding/

Appendices

A Ethics – Consent Form

Researchers

Student: Gregory Ives (gjives1@sheffield.ac.uk)

Student: Lawrence Burvill (ljburvill1@sheffield.ac.uk)

Supervisor: Jon Barker (j.p.barker@sheffield.ac.uk)

Declaration

1. I confirm that I have read and understood the information sheet dated March 16, 2019
explaining the above research project and have had the opportunity to ask questions about
the project.

2. I understand that my participation is voluntary and that I am free to withdraw at any time
without giving any reason and without there being any negative consequences.

3. I understand that the recorded video(s) of me playing chess are to be kept private, solely
used for this research project and that my identity is to be kept confidential. I understand
that my name will not be linked with the research materials, and I will not be identified or
identifiable in the report or reports that result from the research.

4. I understand that images from the data may appear in the publicly available project report.

5. I agree to take part in the above research project.

Name of participant
(or legal representative)

Signature Date

Name of researcher Signature Date

To be signed in the presence of the participant.

Copies

Once all parties have signed this, the participant should receive a copy of the signed and dated
participant consent form, the letter/pre-written script/information sheet and any other written
information sheet provided to the participants. A copy of the signed and dated consent form should
be placed within the project’s main record (e.g. a site file), which must be kept in a secure location.

Please address any queries to: Gregory Ives or Lawrence Burvill

31

B Ethics – Information Sheet

Researchers

Student: Gregory Ives (gjives1@sheffield.ac.uk)

Student: Lawrence Burvill (ljburvill1@sheffield.ac.uk)

Supervisor: Jon Barker (j.p.barker@sheffield.ac.uk)

Invitation

You are being invited to take part in a research project. Before you decide whether to participate
or not, it is important for you to understand why the research is being done and what it will
involve. Please take time to read the following information carefully and discuss it with others if
you wish. Ask us if there is anything that is not clear or if you would like more information.

Aim

The purpose of this project is to create a system which can detect moves being played in a chess
game by way of a webcam or alternate video recording device, in a range of environments. After
detecting a move, the system will then be able to pass the result to a number of applications,
including a chess-playing robot. In order to train the system, it will require many hours of video of
chess games; the data will be used solely for this research project.

Your Task

You will be asked to play a number of games of chess against an opponent. A webcam will be
placed above the board and directed at the board. It will capture your hands as you play chess
moves, and will not capture any identifying information such as your face. You may play as many
games as you wish, and you are not required to finish every game you play.

Confidentiality

No personal data will be recorded for this project. The only data collected will be the video of you
playing chess, with the webcam directed at the board from above: therefore, it will capture your
hands as you play a move and no identifying information. Audio will be muted when recording the
video, so no audio data will be captured or stored. Your identity will remain entirely confidential.
Your name will not be linked to the research materials, and you will not be identified or identifiable
in any reports that result from the research.

[Continued overleaf]

32

How the Video Will Be Used

The video data will be used for training and evaluating the system. Still images from the video
may appear in the project report for illustrative purposes.

Consent

It is up to you to decide whether or not to take part. If you do decide to take part you will be given
this information sheet to keep, and will be asked to sign a consent form. You can still withdraw at
any time without there being any negative consequences. You do not have to give a reason.

Date: March 16, 2019

Please address any queries to: Gregory Ives or Lawrence Burvill

33

Application 025573

Section A: Applicant details

Date application started:
Sat 16 March 2019 at 17:23

First name:
Greg

Last name:
Ives

Email:
gjives1@sheffield.ac.uk

Programme name:
Computer Science

Module name:
COM3610
Last updated:
18/03/2019

Department:
Computer Science

Applying as:
Undergraduate / Postgraduate taught

Research project title:
Computer Vision System for a Chess-Playing Robot

Has your research project undergone academic review, in accordance with the appropriate process?
Yes

Similar applications:
- not entered -

Section B: Basic information

Supervisor

Name Email

Jon Barker j.p.barker@sheffield.ac.uk

Proposed project duration

3: Project code (where applicable)

Start date (of data collection):
Tue 19 March 2019

Anticipated end date (of project)
Wed 1 May 2019

Project code
- not entered -

C Ethics – Application Form

34

Suitability

Indicators of risk

Takes place outside UK?
No

Involves NHS?
No

Human-interventional study?
No

ESRC funded?
No

Likely to lead to publication in a peer-reviewed journal?
No

Led by another UK institution?
No

Involves human tissue?
No

Clinical trial?
No

Social care research?
No

Involves adults who lack the capacity to consent?
No

Involves research on groups that are on the Home Office list of 'Proscribed terrorist groups or organisations?
No

Involves potentially vulnerable participants?
No
Involves potentially highly sensitive topics?
No

Section C: Summary of research

1. Aims & Objectives

The purpose of this project is to create a system which can detect moves being played in a chess game by way of a webcam or alternate
video recording device, in a range of environments. After detecting a move, the system will then be able to pass the result to a number of
applications, including a chess-playing robot. In order to train the system, it will require many hours of video of chess games; the data will
be used solely for this research project.

2. Methodology

Subjects will be asked to play a number of games of chess against an opponent. A webcam will be placed above the board and directed
at the board. It will capture the players hands as they play chess moves, and will not capture any identifying information such as their
faces. They may play as many games as they wish, and they are not required to finish every game they play. Audio will not be captured,
i.e. the microphone will be muted.

3. Personal Safety

Have you completed your departmental risk assessment procedures, if appropriate?

Not applicable

Raises personal safety issues?

35

No

The subjects will just be playing chess in a typical environment, albeit with a webcam pointed at the board; this poses no risk to their
safety.

Section D: About the participants

1. Potential Participants

We are looking to recruit anyone who is able to play chess.

2. Recruiting Potential Participants

We will primarily contact the Chess Society at the University of Sheffield, however we may contact others who can play chess and are
willing to join.

2.1. Advertising methods

Will the study be advertised using the volunteer lists for staff or students maintained by CiCS? No

- not entered -

3. Consent

Will informed consent be obtained from the participants? (i.e. the proposed process) Yes

Participants will be provided with a clearly written Information Sheet (see attachment) that will be made available to them as soon as they
are recruited. They will be given the opportunity to ask questions and care will be taken to make sure that they understand what we will be
doing with their data. They will be asked to sign the consent form (see attachment) before the experiment commences.

4. Payment

Will financial/in kind payments be offered to participants? No

5. Potential Harm to Participants

What is the potential for physical and/or psychological harm/distress to the participants?

There is a possibility that whilst playing chess in front of a webcam, a participant may become stressed.

How will this be managed to ensure appropriate protection and well-being of the participants?

It will be made clear to all participants that they may stop at any point, with no negative ramifications.

Section E: About the data

1. Data Processing

Please outline how your data will be managed and stored securely, in line with good practice and relevant funder requirements

The video data will only be distributed to the project researchers, for training and evaluation purposes. Still images from the video may
appear in the publicly available research reports.

Will you be processing (i.e. collecting, recording, storing, or otherwise using) personal data as part of this project? (Personal data is any information
relating to an identified or identifiable living person).
No

Section F: Supporting documentation

Information & Consent

Participant information sheets relevant to project?
Yes

36

All versionsDocument 1058075 (Version 1)

All versions

Consent forms relevant to project?
Yes

Document 1058076 (Version 1)

Additional Documentation

External Documentation

- not entered -

Section G: Declaration

Signed by:
Gregory Ives
Date signed:
Sat 16 March 2019 at 17:51

Offical notes

- not entered -

37

Downloaded: 15/04/2019
Approved: 18/03/2019

Greg Ives
Registration number: 160152746
Computer Science
Programme: Computer Science

Dear Greg

PROJECT TITLE: Computer Vision System for a Chess-Playing Robot
APPLICATION: Reference Number 025573

On behalf of the University ethics reviewers who reviewed your project, I am pleased to inform you that on 18/03/2019 the above-named
project was approved on ethics grounds, on the basis that you will adhere to the following documentation that you submitted for ethics review:

University research ethics application form 025573 (dated 16/03/2019).
Participant information sheet 1058075 version 1 (16/03/2019).
Participant consent form 1058076 version 1 (16/03/2019).

If during the course of the project you need to deviate significantly from the above-approved documentation please inform me since written
approval will be required.

Yours sincerely

Lucy Moffatt
Ethics Administrator
Computer Science

D Ethics – Approval Letter

38

E Live Webcam Using OpenCV and Flask

from flask import Flask, Response
import cv2

app = Flask(__name__)

Generator of video frames
def gen(video):

while True:
Read frame from video
success, image = video.read()
ret, jpeg = cv2.imencode('.jpg', image)
frame = jpeg.tobytes()
Yield new frame of video
yield (b'--frame\r\n'

b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')

@app.route('/')
def video_stream():

OpenCV webcam capture
video = cv2.VideoCapture(0)
Multipart response
return Response(gen(video),

mimetype='multipart/x-mixed-replace; boundary=frame')

app.run()

39

F Example Annotation File

{
"crop": [

[
0.27023498694516973,
0.12309254070001995

],
[

0.7193211488250653,
0.13933855172409884

],
[

0.7297650130548303,
0.9330722331862399

],
[

0.2506527415143603,
0.9214679395976121

]
],
"calibrate": 0.0,
"moves": {

"4913.985560807907": "e2e4",
"7019.979372582724": "c7c5",
"10178.97009024495": "f1c4",
"15619.45410399656": "f7f5",
"21586.436570691876": "g1f3",
"27670.418693596905": "g8f6",
"32701.403910614525": "e4f5",
"38375.88723678556": "b8c6",
"53585.84254404813": "a2a4",
"58616.827761065746": "g7g5",
"67859.800601633": "d2d4",
"79033.2677696605": "c6d4",
"100444.20485603782": "c1e3",
"114074.66480446927": "d8a5"

}
}

40

	Introduction
	Motivation
	Aims and Objectives
	Applications
	Report Structure

	Literature Review
	Applicable Computer Vision Techniques
	Change Detection
	Object Recognition

	Computer Vision Tools
	Chess Software
	Chess Libraries and Engines for Python
	Universal Chess Interface

	Existing Computer Vision Systems for Chess

	Requirements and Analysis
	Finding and Rectifying the Board
	Detecting When Moves Have Been Played
	Classifying Which Moves Have Been Played
	Classifying Moves Using Change Detection
	Classifying Moves Using Object Classification
	Detecting the Players' Hands

	Data Collection and Annotation
	Manually Filming Chess Games
	Simulating Chess Games

	Testing and Evaluation
	Performance Measure
	Parameters and Testing Sets
	Testing the System's Limits

	Design
	Application Structure
	Computer Vision System
	Back-end Server
	Application Programming Interface

	Front-end Graphical User Interface
	Prototypes
	Live Video Streaming

	Implementation and Testing
	Computer Vision System
	Graphical User Interface
	Demonstration Page
	Annotation Page
	Testing Page

	API Endpoints
	Evaluation of the System
	Chess Game Annotation
	Method of Evaluation

	Results and Discussion
	The Effect of the System's Parameters Upon Its Performance
	The Effect of the Environment Upon The System's Performance
	Overall Performance of the System

	Conclusions
	References
	Appendices
	Ethics – Consent Form
	Ethics – Information Sheet
	Ethics – Application Form
	Ethics – Approval Letter
	Live Webcam Using OpenCV and Flask
	Example Annotation File

